The NADPH oxidase inhibitor diphenyleneiodonium activates the human TRPA1 nociceptor.
نویسندگان
چکیده
Transient receptor potential ankyrin 1 (TRPA1) is a Ca(2+)-permeable nonselective cation channel expressed in neuronal and nonneuronal cells and plays an important role in acute and inflammatory pain. Here, we show that an NADPH oxidase (NOX) inhibitor, diphenyleneiodonium (DPI), functions as a TRPA1 activator in human embryonic kidney cells expressing human TRPA1 (HEK-TRPA1) and in human fibroblast-like synoviocytes. Application of DPI at 0.03-10 μM induced a Ca(2+) response in HEK-TRPA1 cells in a concentration-dependent manner. The Ca(2+) response was effectively blocked by a selective TRPA1 antagonist, HC-030031 (HC). In contrast, DPI had no effect on HEK cells expressing TRPV1-V4 or TRPM8. Four other NOX inhibitors, apocynin (APO), VAS2870 (VAS), plumbagin, and 2-acetylphenothiazine, also induced a Ca(2+) response in HEK-TRPA1 cells, which was inhibited by pretreatment with HC. In the presence of 5 mM glutathione, the Ca(2+) response to DPI was effectively reduced. Moreover, mutation of cysteine 621 in TRPA1 substantially inhibited the DPI-induced Ca(2+) response, while it did not inhibit the APO- and VAS-induced responses. The channel activity was induced by DPI in excised membrane patches with both outside-out and inside-out configurations. Internal application of neomycin significantly inhibited the DPI-induced inward currents. In inflammatory synoviocytes with TRPA1, DPI evoked a Ca(2+) response that was sensitive to HC. In mice, intraplantar injection of DPI caused a pain-related response which was inhibited by preadministration with HC. Taken together, our findings demonstrate that DPI and other NOX inhibitors activate human TRPA1 without mediating NOX.
منابع مشابه
Inhibition of CatSper and Hv1 Channels and NOX5 Enzyme Affect Progesterone-Induced Increase of Intracellular Calcium Concentration and ROS Generation in Human Sperm
Background: Normal sperm function depends on appropriate intracellular calcium (Cai2+) and reactive oxygen species (ROS) levels. Calcium activates NADPH oxidase-5 (NOX5) that leads to ROS generation. The calcium channel of sperm (CatSper) is activated by progesterone and intracellular alkalization. Herein, the interactive role of CatSper, Hv1 channels, and NOX5 enzyme on Cai2+ and ROS generatio...
متن کاملAlpha2-adrenoceptors enhance angiotensin II-induced renal vasoconstriction: role for NADPH oxidase and RhoA.
Alpha(2)-adrenoceptors potentiate renal vascular responses to angiotensin II via coincident signaling at phospholipase C. This leads to increased activation of the phospholipase C/protein kinase C/c-src pathway. Studies suggest that c-src activates the reduced nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase/superoxide system, and reactive oxygen species stimulate the RhoA/Rho kinase...
متن کامل2-Adrenoceptors Enhance Angiotensin II–Induced Renal Vasoconstriction Role for NADPH Oxidase and RhoA
2-Adrenoceptors potentiate renal vascular responses to angiotensin II via coincident signaling at phospholipase C. This leads to increased activation of the phospholipase C/protein kinase C/c-src pathway. Studies suggest that c-src activates the reduced nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase/superoxide system, and reactive oxygen species stimulate the RhoA/Rho kinase pathwa...
متن کاملAngiotensin II (AT1) Receptors and NADPH Oxidase Regulate Cl− Current Elicited by β1 Integrin Stretch in Rabbit Ventricular Myocytes
Direct stretch of beta1 integrin activates an outwardly rectifying, tamoxifen-sensitive Cl(-) current (Cl(-) SAC) via focal adhesion kinase (FAK) and/or Src. The characteristics of Cl(-) SAC resemble those of the volume-sensitive Cl(-) current, I(Cl,swell). Because myocyte stretch releases angiotensin II (AngII), which binds AT1 receptors (AT1R) and stimulates FAK and Src in an autocrine-paracr...
متن کاملVascular endothelial growth factor induces manganese-superoxide dismutase expression in endothelial cells by a Rac1-regulated NADPH oxidase-dependent mechanism.
Vascular endothelial growth factor (VEGF) is a potent vascular endothelial cell-specific mitogen that modulates endothelial cell function. In the present study, we show that VEGF induces manganese-superoxide dismutase (MnSOD) mRNA and protein in human coronary artery endothelial cells (HCAEC) and pulmonary artery endothelial cells. VEGF-mediated induction of MnSOD mRNA was inhibited by pretreat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 307 4 شماره
صفحات -
تاریخ انتشار 2014